

STAR Decadal Plan

James Dunlop for the STAR Collaboration

RHIC: Exploring QCD in detail

Hot QCD Matter

Properties of the sQGP in detail
Mechanism of Energy Loss:
weak or strong coupling?
Is there a critical point, and if so, where?
Novel symmetry properties
Exotic particles

Partonic structure

Spin structure of the nucleon How to go beyond leading twist and colinear factorization?

What are the properties of cold nuclear matter?

How to explore QCD: from hot to cold

- Hot QCD matter: high luminosity RHIC II (fb⁻¹ equivalent)
 - Heavy Flavor Tracker: precision charm and beauty
 - Muon Telescope Detector: e+μ and μ+μ at mid-rapidity
 - Trigger and DAQ upgrades to make full use of luminosity
 - Tools: jets combined with precision particle identification
- Phase structure of QCD matter: Energy Scan Phase II
 - Fixed Target to access lowest energy at high luminosity
 - Low energy electron cooling to boost luminosity for $\sqrt{s_{NN}}$ <20 GeV
 - Inner TPC Upgrade to extend η coverage, improve PID
- Cold QCD matter: high precision p+A, followed by e+A
 - Major upgrade of capabilities in forward direction
 - Existing mid-rapidity detectors well suited for portions of e+A program

STAR: A Correlation Machine

Particle Identification in STAR

Multiple-fold correlations among the identified particles!

Nearly perfect coverage at mid-rapidity

What are the properties of cold nuclear matter?

Is there evidence for saturation of the gluon density?

- RHIC may provide unique access to the onset of saturation
 - Complementarity: LHC likely probes deeply saturated regime
- Future questions for p+A
 - What is the gluon density in the (x,Q^2) range relevant at RHIC?
 - What role does saturation of gluon densities play at RHIC?
 - What is Q_s at RHIC, and how does it scale with A and x?
 - What is the impact parameter dependence of the gluon density?

Upgrades to both STAR and PHENIX to extend observables (focus on EM)

p+A: Where to measure?

Most promising at RHIC energies: $y \sim 3-4$ $Q^2 \sim \text{few GeV}^2$

N.B. Lines only schematic, kinematic control limited in p+A From 2->2 parton scattering, many sources of smearing

LHC mid-y ~ RHIC y=4

STAR Experiment as of 2014

Inner TPC Upgrade

Better tracking and dE/dx PID capability
η 1.0-1.7 region -- broad physics impact on
transverse spin physics program
hyperon and exotic particle searches
high p_T identified particles
BES Phase II+

Not as forward as most useful for p+A, but useful for ridge studies

Forward Instrumentation Upgrade

- Forward instrumentation optimized for p+A and transverse spin physics
 - Charged-particle tracking
 - e/h and $γ/π^0$ discrimination
 - Possibly Baryon/meson separation

Some planned p+A measurements

- Nuclear modifications of the gluon PDF
 - Correlated charm production
- Gluon saturation
 - Forward-forward correlations (extension of existing π^0 - π^0)
 - h-h• $\pi^0-\pi^0$ } Easier to measure • $\gamma-h$ • $\gamma-\pi^0$ } Easier to interpret
 - Drell-Yan
 - Able to reconstruct x_1 , x_2 , Q^2 event-by-event
 - Can be compared directly to nuclear DIS
 - True 2 \rightarrow 1 provides model-independent access to $x_2 < 0.001$
- What more might we learn by scattering polarized protons off nuclei?
- Forward-forward correlations and Drell-Yan are also very powerful tools to unravel the dynamics of forward transverse spin asymmetries – Collins vs Sivers effects, TMDs or Twist-3, ...

Plans for Forward Upgrade

Calorimeter:

- 1) EM: Pb-glass (FMS) augmented by Tungsten SPACAL
 - 1) Smaller Moliere radius for better 2-γ separation
 - 2) Keep high E resolution
- 2) Hadron calorimetry for e/h discrim., jet reconstruction Very Forward GEM Tracker (VFGT)
 - 1) Likely GEM-based
- 2) Details of the design depend on experience with FGT Particle Identification

RICH problematic with accessible p_T resolution Threshold Cerenkov detector under consideration Detector will not be included in initial upgrade

Schedule: proposal this year, construction start 2015+ Ready for data 2017 at the earliest

Calorimeter: SPACAL works

Also measured:

- 1.Uniformity of response across the towers.
- 2. Energy resolution with and without mirror.
- 3. Perform scans along the towers with electrons and muons.
- 4. Estimated effects of attenuation and towers non-uniformities on resolution.

Viable EMC detector technology developed through EIC R&D A prototype hadron calorimeter module will be built in 2013

Tracking: proof of principle

STAR magnetic field allows for moderate p_T resolution in forward direction e.g. FTPC, position resolution ~100 µm
Some added momentum resolution can be garnered from radial magnetic field at poletip

Likely insufficient for RICH particle identification, but sufficient for charge sign discrimination in Drell-Yan: detailed simulations underway

Major upgrade of capabilities in forward direction envisioned

Full calorimetry (EM+Hadronic)
Modern tracking technology to make most of existing
magnetic field

Timescale: 2017+

(BTW: Roman Pots Phase 2 have program in p+A, so engineering needs to take this into account)

Strong set of measurements to be made, complementary to and supporting those at a future EIC

From this workshop: what specific measurements should we optimize for in design?

Backup